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Abstract-A solution of the equations of linear Thermoelasticity is presented for a closed shell with
constant material properties. The solution is constructed by matching asymptotic expansions in the
thinness parameter (hi" = thickness/radius of curvature) in the various regions of the shell. For clamped
conditions at the (meridional opening angle-constant) edge (8 = 80 ), the solution has the character expected
of a thin shell, i.e. a membrane region in the interior with a "thin shell" boundary layer near 8 = 80 , For the
stress-free condition, however, an "Elasticity" layer of meridional width of order h must be introduced
between the "thin-shell" layer and the edge (8 = 80), This solution is also compared with an asymptotic
solution of the thin-shell equations and shown to agree through two orders of magnitude of (hla)'/2.

INTRODUCTION

As is well known, it is not possible to obtain a general solution of the equations of linear
Thermoelasticity for a spherical shell containing an axisymmetric temperature distribution. The
problem lies in the inability of all analytical methods to satisfy general boundary conditions
simultaneously on the inner and outer surfaces (r = a, a +h) and the edge surface (8 = (0),

However, if a numerical solution for a given temperature distribution is all that is desired, this
can readily be obtained using, for example, one of the computer programs based on the Finite
Element method.

Alternatively, one might ask if the same information might be obtained from a solution of
the thin~shell equations. As is well known, analytical solutions are readily obtained for these
equations as they require boundary conditions to be satisfied only on the boundary 8 = 80 • The
remaining stress boundary conditions on the inner and outer surfaces are included in the
equations of equilibrium as loading terms. It should be noted, however, that the principal
advantage of replacing the equations of Elasticity with the thin-shell equations is that numerical
solutions are less expensive to obtain.

The question then facing the analyst is whether the stress distribution given by the
thin-shell equations (numerically or analytically) is an accurate representation of that which
would be obtained (numerically) from the equations of Elasticity. If the shell is thin, it is
reasonable to expect that such would be the case. It is the principal aim of this paper to show
that the thin-shell equations are indeed an adequate representation for spherical shells that are
sufficiently thin. We intend to accomplish this by obtaining an approximate solution of the
equations of Thermoelasticity and showing that it is identical to a solution of the thin-shell
equations to the same order of approximation.

The solution of the equations of Thermoelasticity is obtained for thin spherical shells by the
method of matched asymptotic expansions in the manner proposed by Cole[l]. It should be
noted that the essential structure of the solution was anticipated earlier by Johnson and
Reissner[2] in their study of cylindrical shells. We propose here to incorporate the order of
magnitude analysis used by both Cole[l] and Johnson and Reissner[2] with the method of
matching proposed by Cole to construct the solution for a heated, thin spherical shell that is
either clamped or stress-free at the edge 8 =80 • As was observed by both[l, 2], we find that the
solution behaves differently throughout the shell, being characterized by length scales (see Fig.
1) of the order a, y'(ah), and h in the "membrane", "thin-shell" layer and "Elasticity" layer
respectively. In all three regions, the solution is expressed as an asymptotic series in the
thinness parameter (h = h/a), and a hierarchy of equations is obtained through a limiting
procedure which governs the approximation in each region. The boundary conditions that must
be satisfied by the solution in each region are obtained, following Cole [1], by requiring that the
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Fig. 1. Nomenclature.

series representations in adjacent regions match asymptotically in a region intermediate to each
pair of regions.

As will be shown subsequently, the solution adjacent to a stress-free edge is governed by an
equation identical to that obtained and solved numerically in [3] for the thermal stress
distribution adjacent to the edge of a thin, circular disk. As the details of the numerical scheme
were described in [3], we will not repeat the procedure here for the sake of brevity, and will
refer the reader to [3] whenever necessary for further details.

The solution of the thin-shell equations that will be referred to here for comparison has been
presented in [4]. The method of solution was essentially to apply the order of magnitude
analysis used by Wittrick[5] to Reissner's[6] equations, and use the method of matching
proposed by Cole[l] to evaluate the constants of integration. Formulae are also presented for
the meridional and circumferential stress components that are correct to order (hla)'/2 com
pared to unity using formulae proposed by Kraus [7].

With the establishment of solutions to both sets of equations, it will be shown that they are
identical through two orders of magnitude of the parameter (hla)'/2. Thus, a solution for all the
stresses and displacements accompanying a general axisymmetric temperature distribution has
been obtained and shown to be valid for sufficiently thin spherical shells. This is not only an
important result in itself, as such formulae are always valuable for design purposes, but it has
important implications in other areas. Though it can only be suggested, the above results
indicate that it is likely that similar results might also be obtained for general dome-like shells
under both axisymmetric and slowly varying circumferential temperature distributions. This has
the important consequence that a designer could reasonably choose to evaluate the design of a
thin shell by means of a relatively simple Finite Element solution of the thin-shell equations
rather than require a more costly solution of the equations of Elasticity.

DIMENSIONLESS FORM OF THE GOVERNING EQUATIONS

The equations governing the stresses and displacements in a spherical shell due to an
axisymmetric temperature distribution are given in Boley and Weiner[8] for a linear, isotropic
material undergoing small displacements. If we define a dimensionless temperature distribution
(E» in terms of the actual temperature distribution (T) and a temperature scale (To) by

T - TREF = ToE>((J, z)

and introduce the following dimensionless stress and displacement variables

(u, v) = aaTo{ii, v)

into the governing equations, there results the two equations of equilibrium

au,+ h ( aT +2 - - - + - fJ) 0---=- --_- - 0', - 0'6 - 0'", T cot =
az 1+ hi a8

(1)
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af+ h [aiill +(_ -) t8 3-] 0-= --_- -- UII-U~ co + T =
az 1+ hi an

and the four stress-displacement equations

:~ = h[iir - v(iill +u~) +fl]

u +;;= (l +hi)[ulI- v(ur +u~) +8]

u + v cot 8 = (l +hi)[u~ - v(UI/ +Ur) +8]

a~+~ (au _v) = 2(1 +v)hf.
az 1+ hi a8

The radial coordinate (r) has been replaced by its dimensionless counterpart (i) given by
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(2)

(3)

(4)

(5)

(6)

r a(l +hi) (O,,;;;i";;;1)

and h(== hla) is the thinness parameter. The material properties are characterized by Young's
modulus (E), the coefficient of thermal expansion (a) and Poisson's ratio (v). In the sections
which follow, we will seek solutions to these equations for thin shells that are heated only, i.e.
satisfy the stress-free boundary conditions on the inner and outer surfaces (i == 0,1) that

U,.,.,'TTI/=O

The boundary conditions on the outer edge surface (6 == ( 0 ) will be chosen from either the
stress-free condition that

UIIII,Trl/=O

or the clamped condition

u, v =0

LIMITING SOLUTION IN THE INTERIOR

The method used here for constructing solutions for thin shells is motivated by the solution
proposed by Cole{l] for a similar problem. The essential feature of this method is the
observation that the stress and displacement variables can have different orders of magnitude in
different regions of the shell as h-+0. In particular, for the interior region of the shell, if we
assume that the solution has the following form as h-+O

u(6, i, h) =uo(6, i) + h ll2u,(6, i) +O(h)

v(6, i, h)::::: h Il2 [vo(6, i)+ h Il2v,(6, i) +O(h)]

ur(8, i, h) = h[u?)(6, i) +h Il2Ur(l)(6, i) = Oh)]

f(6, i, h) == h[fo(6, i) +h"2f ,(6, i) +O(h)]

UI/(6, i, h) = UI/(0)(6, i) +h Il2ul/(I)(6, i) +O(h)

u~(6, i, h) ::::: u~(0)(6, i) + hll2u~(I)(8, i) +O(h)

it follows from the governing equations (lH6), when these forms are substituted and repeated
limits h-+0 are taken, that the following hierarchy of equations must be satisfied:

a- (i)
U r - (i) - (i) 0iJz -UII -CT~ == (i=O,I) (7)
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~- iJ-(i)

~+~+(- (i) _ - (il) t II = 0at a8 0'8 0'", CO u (i = 0, I) (8)

iJil(i) = 0
at

(i=0,1) (9)

- +avo __ (1) - (I)

Ul -aii - 0'8 - lJUq,

ilo = e+ ii",IO} - vii/')

ill +Vo cot 8 = ii",(l) - vii8(l)

avo =0
at

(10)

(II)

(12)

(13)

(14)

(15)

The boundary conditions on the inner, outer surfaces accompanying this assumed form are

io = i l = ... =0 (i = 0, 1).

The solution of the first order equations can readily be found, and is expressed in terms of
the temperature integrals 8 m (8), 5(8, i) where

8 m (8) = Ldx8(8, x) 5(8, i) =fe(8,X)dX

The first step in the solution process is the observation that the radial normal strain vanishes
eqn (9) identically. This requires that

fio = (10(8)

and allows us to explicitly determine that i-dependency of the meridional and circumferential
stresses from the associated strain components eqns (10) and (12). Thus, with

(16)

and the stress·free boundary conditions on the inner surface, the equations of equilibrium eqns
(7) and (8) can be integrated with respect to t to yield the following expressions for the radial
and shear stresses

ii/Oj = 2[iOo(8) - 5(8, i)]/O- v)

To = :9 [5(8, i) - £'00(8)]/0- v).

(17)

(18)

The equations for the determination of 00(8) follow from these expressions by requiring that
the stress·free boundary conditions be satisfied on the outer surface (i = 1). Both equations are
satisfied by taking

00(8) = 8 m (8). (19)

The tangential displacement component vo cannot be determined at this stage except to note
from the requirement that the shear strain vanish eqn (4) that
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The solution of the second order equations proceeds in a similar fashion. We again observe
from the vanishing of the radial normal strain eqn (9) that

The accompanying meridional, circumferential stress components then fo\low from the as
sociated strain components eqns (10) and (12) and take the form

Noting that these stress components are independent of Z, we obtain the radial and shear stress
components, as before, by integrating the equations of equilibrium eqns (7) and (8) with respect
to Z to obtain

[
d - (I) ]- - _ - ...!!!.- +( - (I) _ - (I» t 1I

T. - Z dO U9 U<j> co U •

The equations for the determination of the displacements Ot, Vofollow from these expressions
and the requirement that the stresses vanish on the outer surface (z = 1). However, before we
determine the displacements, we find that the boundary conditions require that u/) = - U9(1)

where U9(1) is the solution of

d - (I)

...!!!.- +2 - (I) t 1I = 0dO U9 co U •

As the only solution of this equation is singular at 0 = 0, it fo\lows that the solution of the
second order equations that is regular at 0 = 0 is stress-free but a\lows the displacements

O. = -Aocos 0 (20)

which can be identified as a rigid body translation.
Thus, the solution at this stage in the interior region of the shell is known to order h in

comparison to unity save for an undertermined rigid body translation. In particular, the radial
displacement and the meridional and shear stress components are determined completely. This
has the important consequence that this solution is unable to satisfy either the stress-free or the
clamped boundary conditions at the outer edge (0 = ( 0). It is apparent, then, that this solution is
not valid in the neighborhood of the edge, and a boundary layer solution must be imposed if any
boundary conditions are to be satisfied. In the following section, the equations governing the
stress and displacement distributions in the boundary layer will be developed and solutions
proposed for boundary conditions that can be satisfied.

THIN-SHELL BOUNDARY LAYER EQUATIONS

From the results of the previous section, it is apparent that some form of boundary layer
must exist in the region near the edge. Fo\lowing the solution proposed by Cole, we propose to
investigate the behavior of the solution in this region by introducing the thin-shell boundary
layer coordinate 8, where

and looking for a solution in the following form as h-+ 0

ii(6, z, h) = uo(6, z) + h Il2ut(6, z) +O(h)

v(6, z, h) = hI/2 [vo(6, z) + h Il2v,(9, z) +O(h)]
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iir(O, Z, Ii) = Ii[ii/O)(O, Z) + liI12iir(I)(8, z) +0(1i)]

i(O, z, Ii) = hI12[io(8, Z) +h 1l2i t(8, Z) +O(h)]

iie(8, Z, Ii) = iie(O)(O, Z) +li I
12iie(l)(8, Z) +O(Ii)

iiq,(8, z, Ii) = iiq,(O)(O, Z) + li1l2iiq,(I)(8, Z) +0(1i).

When this form is substituted into the governing eqns (1)-(6) and repeated limits Ii ~Oare taken, we
find that the following equivalent hierarchy of equations govern the solution

(i = 0,1)

a- (0) a-
U r + 'To - (O) - (O) 0-_- --_ -Ue -Uq,
az ae

a-(l) a-
U r + 1"1 - (l) - (I) + - teo-_- ~-Ue -Uq, 'ToCO °=
az ae

a- a- {OJ

~+~=o
az ao

a- a-(lJ
'TI + Ue +( - (0) - (0) t e - 0---::- -_- Ue - Uq, co 0-

az ae

aUi=o
az

- +avo _ - (0) - (0) +Q(e -.)Uo _ - Ue - VUo/> '0 0, Z
ae

- + aVI - (I) - (1)+ e- ae (e -)UJ -_ = Ue - PUq, - 0, z
ae ae

- + - {} - (I) - (I) e- ae (e -)UI Vocotuo=Uq, -VUe + aii o,Z

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

iJVi aUi 0-:::;+-:::;=
iJz ae

(i = 0, I). (30)

The solution of these equations must also satisfy the stress-free boundary condition on the
inner and outer surfaces that

ii/OJ = ii/I) = ... = 0 TO= Tl =... 0 (Z = 0, I)

and an attempt will be made to satisfy the conditions on the outer edge (e = eo) that either the
surface is stress-free, so that

or the surface is clamped so that

fio :::: UI::::' •• = 0

To= i) =... 0 (0 = 0)

(0 = 0).

SOLUTIONS OF THE THIN·SHELL BOUNDARY LAYER EQUATIONS

The solution to the equations derived above for the "thin-shell" boundary layer is obtained
by first observing that the z-dependancy of the displacements, and hence of the in-plane
stresses, can be determined immediately from the requirements eqns (25 and (30) that the radial
normal strain and the shear strain components vanish. With the i-dependancy of the in-plane
stresses now known and expressed in terms of the displacement components, the radial
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equation of equilibrium eqn (21) or (22) can be integrated with respect to i to yield expressions
for the shear stress in terms of the displacement components and the i-coordinate explicitly.
The stress-free boundary condition on the inner surface serves to fix the resultant function of
integration, while the boundary condition on the outer surface yields one of the equations
governing the displacement components. With the z-dependancy of the shear stress now
known, the meridional equation of equilibrium eqn (23) or (24) can be integrated with respect to
i to yield expressions for the radial normal stress in terms of the displacement components and
the i-coordinate explicitly. The stress-free boundary condition on the inner surface again
serves to fix the resulting function of integration, while the boundary condition on the outer
surface yeilds the additional equation required to determine the displacement components. In
both the first order and the second order solutions, the equations governing the displacement
components can be reduced to an equation analogous to the equation governing a beam on an
elastic foundation. This equation is also known to be characteristic of the equations governing a
heated, thin shell. In the paragraphs to follow, the details of the solutions will be presented for
both the first order and the second order corrections.

As noted above, the i-dependancy of the first order displacements can be explicitly defined
in terms of the functions 00 , Vo, where

()'=d().
d8

The in-plane stress components then become

(31)

With the i-dependancy of the in-plane stresses determined explicitly, it follows from the
meridional equation of equilibrium eqn (23) and the boundary condition on i = 0 that

(32)

Further, with the i-dependancy of the shear stress determined explictly, it follows from the
radial equation of equilibrium eqn (21) and the boundary condition at z= 0 that

The equations relating the displacement components 00 , Vo then follow from invoking the
stress-free boundary conditions on To, u,(O) at i = 1. Thus, with

[OU2 - (l +v)Oo- V~]' = 0

- 0~v/6 + V'~/2+ (1 +v)(20o+ V~) = 2(1+ v)9m(80)

it follows that

(34)

where 00 is the solution of

(35)

and m4 =3(1- v2
).

The solution for 00 that is well behaved as 8-+ - 00 can be taken in the form

(36)

With 0()(8) defined, the remaining displacement component Vo(8) is obtained on integrating eqn
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(34) and leads to
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m Itle{[ ( 1+ V) (. 1+ V)] -+l e Co 1- m2 +Do 1+ m2 cos m6

[ ( 1+V) ( 1+V)]. *}+ Do 1~ m2 - Co 1+ m2 SID m6 . (37)

The constant 8 0 is determined by the requirement that the form of the radial displacement
obtained here match that obtained above in the interior region. The remaining constants Co, Do,
Eo are obtained from the conditions at the edge 6 =:; 00 _ For convenience, the details of this
calculation are deferred until the second order solution is obtained.

Proceeding in a similar fashion for the second order solution, the i-dependancy of the
displacements can again be explicitly defined in terms of functions 01, VI, where

The in-plane stress components then become

Proceeding as above with the equations of equilibrium eqns (22) and (24) we also obtain

+z[(l +v)( Vo- zO~)+£(3 - 2Z)0'tJ/6] cot 60_ (40)

The equations relating the displacement components OJ, Vt then follow from invoking the
stress-free boundary conditions on f h (ir

O
) at i =:; L Thus, with

[(1 +V)Ol +(VI - OU2)' +(Vo - 00/2) cot 60]' =:; (l + v) d:,m (60)

it follows that

where 01 is the solution of

(42)

The solution for 0 1(0) that is wen behaved as 0- - 00 can be taken in the form



Axisymmetric thermal stress in a thin spherical shell

8 - -]- 2(Do sin m6 + Co cos m6) cot 60 •
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(43)

With 01(8) defined, the remaining displacement component (\(8) is obtained on integrating eqn
(41) and leads to

l+v • - - - -+ 4m 2 em {(Co sin m6 - Do cos m6) cot 60 +m6[(Co+ Do) sin m6

+(Co - Do) cos m8] cot 60 - 2m [( C1 - D 1) cos m8 +(C1 - D 1) sin m8]}. (44)

The constant B 1 is determined in terms of Ao by the requirement that the form of the radial
displacement determined here match that determined above for the interior region. The
constant Ao is determined in terms of Eo by a similar matching requirement involving the
meridional displacement components. Finally, the constant Eo and the remaining constants C..
D.. E1 are obtained from conditions at the edge 6 = 60 , However, before discussing the
matching conditions between this "thin-shell" boundary layer solution and the interior solution,
let us look at the implications of the boundary conditions at the edge 6 = 60 •

It is apparent from an examination of the forms obtained above for the displacement
componests that the clamped edge conditions can be satisfied at 6 = 60 for i-arb. by requiring
that

The first three conditions are sufficient to determine the three constants Co, Do, Eo assuming
that Bo has been determined by the matching conditions. The remaining three conditions are
sufficient to determine the three constants CI, DI, E. assuming that B. has been determined by
the matching conditions. Thus, the clamped conditions can be readily satisfied leading to a
solution requiring a boundary layer of meridional length of the order of (aht2 in order to adjust
the solution in the interior to the edge boundary conditions.

Alternatively, it is apparent from an examination of the form of the meridional stress
components eqns (31) and (38) that no choice of constants of integration could satisfy the
stress-free boundary conditions for an arbitrary temperature distribution. Further, though the
stress component f o can be made to vanish at 8= 0 by a suitable choice of Co, Do, the edge
value of the stress component f. depends on the temperature distribution and hence cannot be
made to vanish for i-arb. Thus, the forms of the stress components obtained above as being
valid in the "thin-shell" boundary layer are incapable of satisfying the stress-free boundary
conditions. It is therefore necessary, as noted before by Cole[I], to introduce an additional
boundary layer, located between the "thin-shell" boundary layer and the edge, in order to
adjust the solution in the "thin-shell" layer to the stress-free boundary conditions. The details
of this "Elasticity" boundary layer solution will be presented in subsequent sections. However,
before we address this problem, it is necessary to complete the formulation of the "thin-shell"
boundary layer solution by presenting the details of the matching requirements which establish
Bo and the relationship of B 1 to Ao.

MATCHING CONDITIONS BETWEEN THE INTERIOR
AND THIN-SHELL LAYER SOLUTIONS

The essential feature of the method of matched asymptotic expansions is that the solution in
adjacent regions has the same asymptotic expansion in a region intermediate to the two regions
when the two solutions are expressed in a coordinate appropriate to that intermediate region. In
constructing the solution forms in the intermediate region, we define a coordinate 6* and a
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function T/(h) where

and T/(h) is such that
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::t [T/(h)/h1l2
, T/(h)J == (00,0).

h-o,8·~fixed

The definition of ".,(h) implies that we are examining the solution in the interior region near
fJ == fJo, and the solution in the "thin-shell" boundary for large values of 101. In the paragraphs
which follow, we present the details of this matching process for the radial displacement (u),
and present only the results of this process for the remaining stress and displacement variables
as the mechanics of the process is quite similar in all cases.

The matching requirement for the radial displacement requires that

5£
ii-o.-8"'-fixed

([Uo( fJ, i) uo(0, i)] +hI12[U,( fJ, £) - ii ,(8, i)] +O(h)} :::: 0 (45)

to all orders of magnitude of T/(h). With the components uo, iio, etc. of the displacement given
in eqns (19), (20), (36), (43), the required expansions in the intermediate region are obtained by
expressing the solution in the interior region near fJ == fJo by

and the limiting form of the "thin-shell" boundary layer solution as

Uo = [28m (fJo) BoJ/(l- v) +T.S.T.

ii, =- B,/(l- v) + "!.~I: d8m (fJo)+ T.S.T.
h dfJ

where T.S.T. expresses the fact that the remaining terms are transcendentally small, as h~O.
For first order matching, we require simply that the leading terms in eqn (45) match with the

result that

This has the important consequence that the term proportional to 8 in (10(8) (see eqn 37) and
the term proportional to 02 in V1(0) (see eqn 44) vanish identically.

For second order matching, we divide the matching requirement eqn (45) by hll2 and obtain
the result that

B, == (1- v)Aocos flo

provided that

Note also that the terms proportional to 8* cancel.
On applying the matching requirement to the meridional displacement (iJ), we obtain the

result that

Eo == Aosin fJo
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from first order matching, and a requirement on the behavior of v,(8, z) near 8 = 80 provided
that B1 is given by the condition noted above. Further details on this condition will not be
presented as this requires the development of the third order solution in the interior which is
beyond our current needs. Suffice it to say that this latter condition fixes the amplitude of a rigid
body component of the second order solution in terms of E 1 and the temperature distribution at
the edge.

On applying the matching requirement to the stress components, we obtain no new
information but do obtain a verification of results obtained above. In particular, if we apply the
matching requirement to the meridional normal stress component (176)' we verify that the
limiting form of (f6(0)(6, z) agrees with 176(0)(80, z) from the first order matching condition, and
obtain the requirement that

:£ [B 1 -(l-v)Vo cot80 ]=0
iI-<>.e*-fixed

from the second order matching condition. This latter requirement is, of course, consistent with
the results obtained above for Eo, B I • Similar results are also obtained when the matching
requirement is applied to the circumferential normal stress component (17",).

On applying the matching requirement to the shear stress component (f), we note that first
order matching is achieved as To( 6, z) is transcendentally small in the intermediate region.
Proceeding with second order matching, we verify that the limiting form of TI(6, z) agrees with
f o(80 , z).

Finally, on applying the matching requirement to the radial normal stress component (17,),
we verify that the limiting form of (f/O)(6, z) agrees with 17(0)(80, z) from the first order matching
condition, and note that the second order matching condition is satisfied identically.

Thus, the matching conditions establish the constants Bo, B.. Ao so that the interior solution
and the "thin-shell" boundary layer solution match asymptotically in the intermediate region of
overlap. For the clamped boundary condition, this completes the formulation of the solution as
the remaining constants of integration are all determined by conditions at the edge 8 = 80 • For
the stress-free boundary condition, however, we must proceed to find the form of the solution
in the "Elasticity" layer in order to determine what conditions must be satisfied by the
"thin-shell" solution at the edge 6= O. In the sections to follow, this "Elasticity" layer solution
is developed and used with the matching principle to determine the required additional
conditions.

ELASTICITY BOUNDARY LAYER EQUATIONS

In order to satisfy the stress-free boundary condition along (J = 80 , it is necessary to impose
a boundary layer within the "thin-shell" boundary layer. As the meridional extent of this
"Elasticity" layer is expected to be of order h, we introduce the coordinate 8, where

8 = 80 +h8

and assume that the solution in this region has the following form as h~ 0

u(8, z, h) = uo(8, z) + hIl2UI(8, z) + hU2(8, i) + h3/2U3(8, i) +0(h2)

v(8, Z, h) == h Il2[vo(8, i) + hIl2V1(8, i) + hV2(8, i) +O(h3/2)]

17,(8, Z, h) == (f,(0)(8, Z) + h Il2U,(I)(8, i) + hu,(2)(8, z) +0(h3/2)

7'(8, Z, h) == 70(8, z) + hI1271(8, i) + h72(8, z) +0(h3/2)

176(8, Z, h) == u6(0)(8, Z) + hIl2U6(1)(8, Z) + hU6(2)(8, i) +O(h3/2)

17",(8, Z, h) == u",(0)(8, Z) + h Il2U",(I)(8, i) + hU",(2)(8, i) +0(h3/2).

When this form is substituted into the governing eqns (lH6), and repeated limits h~O are
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taken, we find that the following hierarchy of equations govern the solution

"A(i) "A
YO": + V~ 0 (i = 0, I)

aZ ae

_+ aas~i) __ 0
" (i = 0, l)

aZ ae

~~i =0 (i =0, 1)

aU3 _ A(I) _ (A (I) + A(I»

itt - (J"r V O"S (J",;,

av:=o
a(J

(45)

(46)

(47)

(48)

(49)

(50)

aVI + A A {OJ
-A Uo=O"s
a(J

(51)

aV2 + A _ A (I) ( A (I) + A (I»
-A UI - O"S V (J", (J"</>

ae
Uo = a</>(O) - v(as{O) +a/OJ) +e«(Jo, ,n
U1 + Vo cot eo ir/) - lI(irt) +ar{l)

au:=o
a(J

av~+ au; =0
az a(J

av: +au} 2(1 +lI)foaz a(J

The solution of these equations must also satisfy the stress-free conditions that

(52)

(53)

(54)

(55)

(56)

(57)

(58)

on the inner and outer surfaces, and

fo, ft, ... = 0 (z = 0, I)

(8 = 0)

on the edge e= (Jo.
In addition to the boundary conditions, the solution of these equations must match the

solution of the thin-shell boundary layer equations in some sense as ii -+ O. This matching
procedure will serve to identify not only the constants of integration of the "thin-shell"
solution, but will also lead to some physical interpretation of the matching conditions them
selves. The details of this procedure will be deferred to a later section while attention is
devoted to obtaining the form of the solution itself.

SOLUTIONS OF THE ELASTICITY LAYER EQUATIONS

The solution of the boundary layer equations can most conveniently be formulated in terms
of the stresses ar{i), as{i\ f i (i 0, I) to form an equivalent plane strain problem. As a
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preliminary, however, the displacements accompanying these stresses must first be determined,
and compatibility equations derived from the equations relating the higher order displacement
components to augment the existing equilibrium eqns (45) and (46).

The displacements accompanying the first and second order stresses follow immediately
from eqns (47), (50), (55) and (56) which essentially require that the radial normal, meridional
normal and shear strain components vanish identically. Thus, with

it follows that

Uo :;::; Ao :;::; const. Vo= \\(z)

dVo dOl
dz :;::; - dB

and

dOl dVo-,= - - =Az= constant,
de dZ

Also, we obtain

(A" 81 :;::; const.).

A (II AA A' Ii (BA
AA -) II ( , (II A(II)0'", = 1+ zv + 1- zZ cot Vo + II 0'/1 + 0', •

(59)

(60)

The compatibility equation for the first order stresses is obtained by eliminating the
displacement components uz, VI from eqns (48), (51) and (57). Thus, on taking the appropriate
derivatives, there results

~[A (01_ (" (01+ " (Ol)]+.t-[" (01_ (A (01+ ' (01)] =2(1 + ) ;lfo _ aze (8 -)
-z 0'/1 II 0', U'", "z U', P U'/1 U'", "" z 0, Z •

h N me ~

It should be noted that this equation could have alternatively been derived directly from the
compatibility equations given by Lur'ye [9]. In particular it is the first order form of the
equation (Q33 =0). Finally, on eliminating 0-",(01 by means of eqn (59), we obtain the following
equation to augment eqns (45) and (46) for the determination of the stress components

where

~2" (0) ~2' (01 ~2' ~2a

~+!0!L_ V2( ,(01 A (0»= 2~--Q_U(ll -)
"2 2 II U', +U'/1 A 2 uo, Z

ae az afJilz ai
(61)

As is well known, the solution of the equations of equilibrium eqns (45) and (46) that also
satisfies eqn (61) can be expressed in terms of an Airy stress function 4>(0\ where

and t/J(0) is the solution of

V4 .1..(0)= __I_.a2e(e -)
'#' 1- P az2 0, Z • (62)



760 H. E. WILLIAMS

The stress-free boundary conditions can also be expressed in terms of q,(O\ and lead to the
following equivalent representation

q,(O) 0
aq,(O)

8 0, O~i~l-. =0 on
an

q,«(l) =0
Jq,(O)

i 0,1, -00< 8~o. (63)-=0 onJi

Thus, the problem of determining the stresses in the "Elasticity" boundary layer is
analogous to the problem of determining the transverse displacement of a laterally loaded,
clamped rectangular plate. It should also be noticed that, following [3], this problem is identical
to that of determining the stresses in the "Elasticity" layer associated with the thermal stress
distribution in a thin circular disk. Much of the solution described in [3] will therefore be
applicable to the present problem. Before proceeding with this solution, however, we return to
complete the formulation of the equations governing the second order solution.

Proceeding as above, we obtain the compatibility equation for the second order stresses by
eliminating the displacement componentts U3' th from eqns (49), (52) and (58). Thus, on taking
the appropriate derivatives, there results

As above, it should be noted that this equation is simply the second order form of the
compatibility equation (Q33 0) proposed by Lur'ye. Finally, on eliminating uq,(I} by means of
eqn (60), we obtain the following equation to augment eqns (45) and (46) for the determination
of the second order stress components

02 '(1) a2 , (l) 02 '
-.!!L+---.!!!:....- _ n 2(' (1) + '(1» = 2--!!.

-2 '2 V V Uo U r ••
az an anai

(64)

The solution of the equations of equilibrium eqns (45) and (46) that also satisfies eqn (64) can
also be expressed in terms of an Airy stress function q,(l), where

and q,(l} is the solution of

(65)

The stress-free boundary conditions can also be expressed in terms of q,(\), and lead to
equations analogous to eqns (63). In this case, however, the only solution of eqn (65) that
satisfies homogeneous boundary conditions is the trivial solution. This, with

(66)

it follows that

(67)

Returning now to the problem of obtaining the solution of eqn (62), we note that for our
present purposes it is necessary to obtain only the limiting form of that solution as 181~ 00. It
should be noted, however, that the complete solution of eqn (62) must be obtained numerically.
An example solution is presented in [3] for the case of a temperature distribution such that
(028/0£2)(80 , £) == const. However, before we can apply the results of that example here, we
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must obtain the constants of integration it (i = 0,1,2) which depend on matching this solution
to that in the "thin-shell" layer. The details of this procedure are presented in the next section.

The required limiting form of the solution of eqn (62) is obtained, following [3] by assuming
that the general sol~tion is the superposition of the particular solution given by

and a correction, where the stresses due to the correction can be interpreted as due to a
self-equilibrating meridional normal stress distributed over the edge 8= O. If the stress
distribution due to the correction can be shown to decay sufficiently as 181~ 00, it is clear that
the stresses associated with tjJ~~rt are the required limiting form. However, Knowles [10] has
shown that this is indeed the case, and that the stresses due to a self-equilibrating system of
loads applied to the finite end of a semi-infinite strip decay exponentially with distance from
that end. Thus, applying Knowles' result here leads to the conclusion that

d..l.(O)

, (O)""~+TST
(T8 dz2 '" (68)

Having established the forms for the stresses and the radial displacement component of the
second order solution, it is left only to determine the associated meridional displacement
component to complete the solution. This is readily accomplished by integrating eqn (51) with
resp~ct to 8 noting the boundary conditions on tjJ(O) and, following the results of the last
paragraph, defining

The function Fo(8, z)/(1- ,,2) is the integral of that component of the meridional stress 178(0) that
decays exponentially with distance from the edge 8=0 and hence is bounded as 181~00. Once
the numerical solution of eqn (62) is obtained, the function Fo(O,z) can readily be obtained by
subtracting the particular solution for 178(0) from the complete solution and integrating. Thus,
assuming that Fo(8, z) is available, it follows from eqn (51) that

, (8' -) '(0 -) (1 atjJ(O) Po '
VI ,Z =VI ,Z -v +v)-,-+ 0(8,z)

a8

-(1 + v)8[Ao+2(1-3z)f)m(80)-6(1-2Z)Em(80)] (69)

where VI(O, z) is as yet undetermined. The form of this function is determined in the next
section from the matching principle.

MATCHING CONDITIONS BETWEEN THE THIN-SHELL
AND ELASTICITY LAYER SOLUTIONS

As the solution in the "thin-shell" layer is unable to satisfy stress-free conditions at the edge
8= 0, and the solution in the "Elasticity" layer has been constructed to satisfy those con
ditions, we must seek the conditions which ensure that the two forms of the solution match. In
particular, as in a previous section, we seek the asymptotic expansion of the solution in each
layer in a region intermediate to the two layers and the conditions under which these
expansions agree.

In constructing the forms of the solution in this intermediate region, we define a coordinate
8** and a function /L(h) where

and /L(h) is such that
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:£ [p,(h)/h I/2
, p,(h)/h] (0,00).

ii.8"'~fixed

The definition of p,(h) implies that we are examining the form of the solution in the "thin-shell"
layer in the region near 0 0, and the form of the solution in the "Elasticity" layer for large
values of 181. In the paragraphs to follow, we present the details of this matching process for the
meridional normal stress (0'8), and present only the results of this process for the remaining
stress and displacement variables.

The matching requirement for the meridional normal stress requires that

:£ ([O'8(0)(0, i) - 0-8(0)(8, i)] +h Il2[U8(l)(0, i) - 0-8(1)(8, z)J +O(h)} = 0 (70)
ii-O.e*·-flxed

to all orders of magnitude of p,(h). With the components 0'8(0), U8(1) of the "thin-shell" solution
given by eqns (31) and (38), the required expansion in the intermediate region can be
constructed by expressing the solution near 6=0 by

(1 - ,,2)0'8(0) "" (I + /1)[ 00(0) 6(80, i)] + V~(O) - zO~(O) +0[(1 + /I) 0~(O) + V~(O) - zU'g(O)] +O(02
)

(1- /l2)O'8(l) "" (1 +/1)01(0) + V;(O) - iO~(O) +v[ Vo(O) - zU~(O)] cot 80 +0(0)

where Vo, VI are defined by eqns (34) and (41). The limiting forms of the meridional stress in
the "Elasticity" layer are given by eqns (66) and (68).

For first order matching, we require simply that the leading terms in eqn (70) match with the
result that

(71)

For second order matching, we divide the matching requirement eqn (70) by hl/2 and obtain

5£ {P,8** 1- ~i O~(O)+[(1 + v) 01(0) + Van) + vVo(O) cot 90]
h-oO.8**·fixed 2h

- i[ 0':(0) +vUMO) cot 80]+O(p, 2/h3/2
) } == O.

Clearly, if this expression is to vanish for all i, we must require that

0':(0) + vOMO) cot 80 = 0

provided that p,(h) is such that

:£ (p, 2/ir12
) = O.

h-oO

(72)

(73)

(74)

To readers familiar with thin-shell theory, these equations have immediate physical significance
in terms of the stress resultants familiar in shell theory. For convenience, however, we prefer to
defer this discussion until all matching conditions are developed.

On applying the matching requirement to the remaining stress and displacement variables,
we obtain no new information with which to fix the constants of the "thin-shell" solution save
for a condition on the first order meridional displacement. Essentially, the remaining conditions
serve to fix the constants of the "Elasticity" layer solution. This follows the observation that
the edge value of the radial displacement is governed by the interior solution, while the edge
value of the meridional displacement is governed by conditions on the "Elasticity" layer
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solution. In what follows, it is convenient to take v(O = 00 , i = 1/2) = 0 so that
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in order to more readily compare the present results with those of thin-shell theory.
If we apply the matching requirement to the circumferential normal stress component (0'.,.),

we again obtain the result given by eqn (71) from the first order condition, while second order
matching requires that

A, + 13 1 cot 00 = 0,(0) + Vo(O) cot 00

,.12= OMO)

(75)

(76)

if we use eqns (73) and (74) to eliminate 0':(0), V;(O).
If we apply the matching requirement to the radial displacement component (ii), we obtain

the requirements that

,.10 = 00(0)

AI = 01(0)

(77)

(78)

from the first and second order matching conditions respectively.
If we apply the matching requirement to the meridional displacement component (v), we

obtain the condition that

(79)

from the first order matching condition. As 13 1 has been determined above, this equation
essentially fixes Eo in terms of Co, Do. In order to carry out second order matching, we require
the limiting form of v,(8, i) as 181 ~oo. This form is readily obtained from eqn (69) as (acf>(Ol/a8)
becomes transcendentally small and Fo(8, i) becomes Fo(oo, i) by definition. Thus, it follows that
second order matching is achieved provided that

v.(O, z) = VI(O) - zO;(O) - Fo(oo, i) (80)

and eqn (71) are satisfied. As we have already arbitrarily taken v(O = 00 , t = 1/2) = 0, we see
that this implies that V,(O, 1/2) = 0, while eqn (80) can be interpreted as fixing E1 in terms of
Co, C" Do, D. and the temperature distribution.

When the matching requirement is applied to the shear stress component (of), we find that
the first order condition is satisfied identically as 70(8, z) is transcendentally small as 181~oo.

Proceeding to the next order, we obtain the requirement that fo(O, z) = 0 which is equivalent to
eqn (72). Thus, matching through two orders of magnitude has yielded no new information to
accompany eqn (74) for fixing the constants of the second order "thin-shell" layer solution. It is
necessary then to extend our study of matching requirements to order h. However, as this
requires developing the limiting form of 72(8, z) and the associated third order "Elasticity" layer
solution that has otherwise not been required, we regret the interruption in the continuity of the
presentation and proceed to present the details of the calculation in the Appendix.

With the limiting form of 72(8, z) given by eqn (A21) of the Appendix, and the expressions
for the shear stress components To, f l given by eqns (32) and (39), it follows that matching to
order h is achieved provided that

0';'(0) + O~(O) cot 00= 6(1 + P)[2d~m (00)- d:m(00)]

is satisfied and I-'-(h) is such that

it (I-'- 21h312
) = O.

h-.o

55 Vol. 13. No. 8-E

(81)
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Thus, by extending the order of the matching process, we have succeeded in obtaining an
additional requirement for the determination of the constants of the second order "thin-shell"
layer solution. Again, this condition has immediate physical significance in terms of the stress
resultants of thin shell theory, and will be discussed in the next section.

As a final exercise in this section, we examine the matching requirement applied to the radial
normal stress component (0',). As with the shear stress component, we find that first order
matching is achieved identically as O'/O}(fJ, i) is transcendentally small as 181~ 00. However,
unlike the case of the shear stress, the next term in the series for 0', is O(h) so that we must
again look to the third order "Elasticity" layer solution in order to match the component O',IO} of
the "thin-shell" layer. Unfortunately, as above, the reader must refer to the Appendix to obtain
a presentation of the details.

The matching condition to order h essentially requires that the limiting form of cT,(2}(fJ, i) as
given by eqn (A22) of the Appendix agree with the edge value of O'/0l(8, i) as given by eqn (33).
As can be shown by using the condition on U~(O) obtained above, this matching condition is
identically satisfied. Thus, all components of stress and displacement in the two layers are
matched at least to within 0(hl

/
2

) compared to unity.
In summary, we have used the matching conditions to determine the constants of integration

of the solution in the two layers. We have developed two equations (eqns 71 and 72) for the
determination of Co, Do of the first order solution, and two equations (eqns 74 and 81) for the
determination of Ct, DI of the second order solution. With Co, Do known, A2 (and hence 81) is
determined from eqn (78). The constant Eo (and hence Ao, Bd then follows from eqn (79). At
this stage, Uo, U\ are completely defined so that Ao, A\, A2 can be determined from eqns
(76)-(78). Finally, assuming that the limiting form of Fo(8, i) is available, the constant E\ is
obtained from eqn (80). This completes the formulation of the solution. In the following section,
we examine the implications of these results and note how they might be applied to practical
problems.

SUMMARY AND DISCUSSION

In the previous sections, an approximate solution of the equations of Thermoelasticity has
been obtained for an axisymmetric temperature distribution. The character of the solution is
found to depend on the boundary condition at 8 = 80. For the clamped condition, the solution is
characterized by a "membrane" region away from the edge and a "thin-shell" boundary near
the edge. These regions are themselves characterized by the solution varying significantly over
meridional lengths comparable with the radius (a) and the intermediate length (v'(ah» respec
tively. For the stress-free boundary condition, the solution is similarly characterized except that
there must be an "Elasticity" layer between the edge and the "thin-shell" layer. This layer is
characterized by the stresses being all the same order of magnitude and varying significantly
over a meridional length comparable with the thickness (h) of the shell.

We now proceed to show that the solution obtained above is identical to that obtained in [4]
from the thin-shell equations. Clearly, this does not apply to the solution in the "Elasticity"
layer and the implications of the solution in this region will be examined in a later paragraph.

The solution in the interior region is most readily compared as the notation for the
displacements is essentially the same and the stress resultants are readily obtained from the
stress components using the temperature integrals defined in the first section. This "membrane"
region is characterized by displacements that are independent of the thickness coordinate and
such that the mechanical strain is essentially balanced by the thermal strain. The accompanying
in-plane stress components are proportional to the difference between the thermal strain and
the thickness-average thermal strain.

In order to compare the solution in the "thin-shell" layer, we must first identify the
"thin-shell" middle surface meridional displacement components V~, Vt where

Vt = vi(8, i = 1/2) = Vi Ui/2 (i = 0, I)

and the thin-shell force and moment stress resultants given by
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(!~q,(0\ N/» = f (iiq,(O\ ii/I) di

(Me(O), Me(I» = L(iie(O\ iie(l»(i -1/2) dE

(Mq,(O), Mq,(I) = f (iiq,(O\ ii/)(E - 1/2) di

(00, (1) = L(To, 71) di.
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Note that the (1- {IR)-term is absent from the integrands of the stress resultants, where
{(=z - h12) is the coordinate measured normal to the middle surface. This is consistent with
our intention here of comparing terms only to order (h/a)1I2 in comparison to unity. It should
also be noted that Ne(O) is so superscrited as it is the first non-zero force stress resultant
associated with iie.

With the stress resultants now defined, we proceed to determine the corresponding stress
resultant-displacement equations implied by the solution of the thin-shell boundary layer
equations. Thus, with the stress components given by eqns (31), (32), (38), (39) and using eqns
(34) and (41) to express the constants Bo, B I in terms of the displacements, we find that

N.t) = 00 - 8mUJo)

(1- v2)(Ne(0), Nq,(I) = (I +V)[ 01 - 8dd~m (80)] + (I, v) VT' +(v, 1)V~ cot 80

(Me(O\ Mq,(O» = MT - (I, v)0~/(l2(1-v2»

(M,(I) if. (I» -dMT - -
e, q, =8d8(80)-[(I,v)U':+(v,I)U~cot801/(l2(l-v2»

00 = - 0~/(l2(l - v2»
01 = - (O'i + O~ cot80)/(l2(1- v2» +d~T (80)

where

As can readily be verified, the first four equations relating the in-plane force and moment
stress resultants to the displacements are essentially the constitutive equations and are identical
to those obtained in [4] from the thin-shell equations. The latter two equations are essentially
the equations of moment equilibrium and are also identical to those obtained in [4]. A further
interesting result can be obtained by differentiating these latter two equations. If we use eqns
(36) and (42) to eliminate O~v, mv and eqns (34) and (41) to define V~, V;, we obtain the result
that

Note that these equations for the determination of V~, Vt as well as eqns (36) and (42) for the
determination of 00, 01, are identical to those obtained in [4]. Thus, the set of equations
comprising the constitutive equations and the equations of equilibrium are identical with those
obtained from the thin-shell equations.

It is not surprising then, to find that the corresponding expressions for the stress com
ponents in terms of the force and moment stress resultants are also identical with those
obtained in [4] from the thin-shell equations. In particular, it can be shown that
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(UeW), Uq,(O» = [8m (iJo) -(80 , £)]/0 v) + (0, Nq,(O» + 12(£ -l/2)[(Me(0\ Mq,(O» - M T 1

(Ue(!), uq,(!) = be:; (80)- ~~ (80 , i)]/0- v) + (Ne(O), Ne(1»

+ 12(i - 1/2)[(Mt), Mq,(1» - 8dd~T (80 ) J.

Thus, we see that the stress components are, with the exception of the temperature integrals,
linear functions of the thickness (i) coordinate. This result confirms the validity of the plane
stress and kinematic displacement assumptions that are usually made a priori in developing
thin-shell equations.

With the establishment of the thin-shell equations as limiting forms of the equations of
Elasticity, we now use the stress-resultant concepts of thin-shell analysis to interpret the
boundary conditions derived above from the requirement that the solution in the "thin-shell"
layer match that in the "Elasticity" layer. Using the definitions for Me(o>, Me(l), AfT given above,
we see that the conditions given by eqns (71) and (74) require that Me(0)(8 =0), Me(l)(8 = 0) both
vanish. Thus, the meridional bending moment must vanish through two orders of magnitude.
Further, using the definition for Ne(O) and eqn (74), we see that the condition given by eqn (73)
requires that Ne(0)(8 = 0) vanish. As the matching requirement leading to the definition of Bo

already insures that the integral of Ue(O) vanish identically, we see that the meridional force
stress resultant also vanishes through two orders of magnitude. Finally, using the definitions for
00, Oh we see that the conditions given by eqns (72) and (81) require that 00(8 = 0), 01(8 = 0)
both vanish. Thus, the shear force stress resultant also vanishes through two orders of
magnitude. In general, then, it can be concluded that the solution of the "thin-shell" layer
equations essentially satisfies the free-edge condition at 8= 0 that the meridional and transverse
force stress resultants and the meridional bending moment stress resultant must all vanish.

Having now shown that the solution of the thin-shell equations adequately describes the
stresses and displacements in a sufficiently thin shell except at the edge, we now investigate the
possibility that the stress in this "Elasticity" layer, which is not predicted by thin-shell
equations, might dominate that in the thin-shell layer. Should this be the case, a thorough stress
analysis would always have to include an evaluation of these edge stresses, i.e. a solution of
eqn (62). Unfortunately, a definitive answer to this question cannot be given as this would
require a solution of eqn (62) for a general temperature distribution. Some guidance, however,
can be obtained from the numerical solution presented in [31 for the case of a temperature
distribution such that the right-hand-side of eqn (62) is a constant. We observe from these
results that the meridional normal stress decreases monotonically from its limit at the edge of
the "thin-shell" layer to a boundary value of zero at 9= O. In addition, the transverse normal
stress increases monotonically from a limit value of zero at the edge of the "thin-shell" layer to
its value at the edge (9 = 0). In particular, the value of the transverse normal stress at the edge
(9 = 0) is relatively small in comparison with the value of the meridional normal stress at the
edge (181 ~ (0) of the "thin-shell" layer. Thus, neither the transverse normal stress nor the
meridional normal stress are capable of generating astress concentration. Alternatively, as the
"hoop" stress in the "Elasticity" layer is approximately given by

it is apparent from the comments made above that (Tq, will take on its maximum value at the
edge of the thin-shell layer and then decrease slightly as o-e(O) decreases and o-r(O) (which is
numerically smaller) increases toward 8= O. We conclude, therefore, that the "Elasticity" layer
is not a region of stress concentration, and that the dominant stresses will occur in the
"thin-shell" layer. As these stresses are adequately predicted by thin-shell theory, it is apparent
that there is no need to look to the equations of Elasticity for a more refined description of
behavior for temperature distributions that do not depart appreciably from one of constant
curvature. There still remains unanswered, however, the question of whether a stress concen
tration could result from a more general temperature distribution. For the time being, this
answer must be left to the judgement of the designer.
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APPENDIX
The third order Elasticity layer

We obtain the governing equations of the third order "Elasticity" layer using the formalism described in the previous
section on the "Elasticity" layer with the addition of the term ii'u. to the radial displacement component expansion and
the term ;i'v) to the meridional displacement component expansion. The resulting error then becomes 0(11'12) for both
series. Thus, proceeding as before, we obtain the two additional equations of equilibrium

,'(2' " "u(T, +uT'+2' ,0, '(0' • (0'+' t fJ ,uTo 0-,- --: u,. -us -U. ToCO o-z--;;=
oZ afJ afJ

" a'm ,'(0,
~+~+('(O)-'(0') t" +3' - '~=O_ '" O'fJ U. co va To Z ...
aZ afJ a9

and four stress-displacement equations

au. • (2) (. (2'+ • (2,)+ fJ·ae (" ')ai (T, IJ (T. (T. afJ 110, Z

• + av) = • (2, _ (. '" + • (2» +,; ae (fJ -J + '[ • (0' _ (' (0' + ' (0» + ""(IJ ')]U2 ... Us V (Tr (1", [1 0, Z Z Us V Ur U. U 0, z
iJlJ afJ

av,! +au: _ i u; _ v, =2(1 + V)7,
aZ alJ alJ

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)

As the solution can be most conveniently be formulated in terms of the stresses 0-,<", 0-.(", 7, to form an equivalent
plane strain problem, we proceed to find a compatibility equation to augment the equations of equilibrium and the eqn (A6)
for 0-:". Thus, if we eliminate U., v) from eqns (A3}-(A5) and express U2' V, in terms of the first order stresses using eqns
(47), (48), (51), (57), we obtain the following equation of compatibility

(
a' •(2' a2

' (2') 2'
(I+v) ++~ -vV2(cr,'''+cr:''+cr.(2')-2(1+v) a,T2

alJ' ai' alJai

= - 8 o)~ (fJo,i)-~ [ia~ (1J0, i)] +i{O +V)(a'O:(O' _ a'o-.'o,)
aIJaz2 az az alJ' ai'

- v(~- ~)(cr'o, + 0- (0'+ cr (O')} _l. [(2+ v)o- (0' -(I + 2v)0-(O'- veT (0'] + 2(1 + v) uT.
a8' ai" • • ai • ,. a8 .

Once more, we note that this equation is simply the third order form of the compatibility equation (Q" = 0) proposed by
Lur'ye. The final form of the required compatibility equation is obtained by eliminating 0-:", 0-:0) using eqn (A6), 53
respectively with the result that

a2'(2' a2' (2) a2'+ +~ - pV'(cr,''' +0-.''') - 2--:P-
alJ' ai' alJai

• a)e _ .a'e _ iJe _[iJ'o-,'O' iJ'6.'o,
=-fJ--, (lJo,z) z-,-(lJo,z)--=(fJo,i)+z -.----

alJaz' az' az afJ' ai'

- v( a~, - 0',)(0-,<0' +0-.'0')]- v~(cr.'o, +0-,'0') cot fJo_~ (0-,'0' +20-.'0')
afJ iJi iJfJ ai

(A7)

where the right hand side has been simplified using the equations of equilibrium eqns (45) and (46).
Returning now to the equations of equilibrium eqns (AI) and (A2), it follows on introducing the definitions of the



768

potential 4>(U' that they can be written in the form

H. E. WILLIAMS

aR aT •
-+ -;~ A.-9(1:I.,i)
ai al:l

as aT, •
--:; +- =< [Ao-9(1:1., z)] cot 1:10
al:l ai

wbere

a.l.WI a"'w,
R =a-P'+2iu,'o'-(l + p)_'I'-. -(2- p)_'I'_, cot 1:1"

iJz iJfJ

a</J,OI a</J'.)
S=a-.m p--. cotI:l0 -(2-p)-

al:l ai
, .< at/J"" a</J'o,

T= r,+zr,,- p-. +(1- /I)-cot 90'
a9 ai

Tbe boundary conditions on R, S, T follow from tbose required of </J(0) and imply tbat

(A8)

(A9)

(AlO)

(All)

(AI2)

R=T 0 on i'=O, J;

S =T = 0 on 0=< 0;

00<0'" 0

O"i"L

(Al3)

(AI4)

Now, proceeding as in [3], we construct a particular solution of eqns (A8) and (A9) by assuming tbat S is a linear
function of i, i.e.

Sp." = f(9) +i· g(O)

and determining t, g such that eqns (A8) and (A9) and tbe boundary conditions eqns (AI3) are satisfied. The associated
particular solutions for T, R are obtained by integrating eqns (AS) and (A9) from i =< 0 to i-arbitrary using the boundary
conditions on i =0 to evaluate the constants of integration. With the form of TPO'" R".,.. now determined in terms of the
derivatives of f, g, we obtain the equations governing f, g by imposing the boundary conditions at i = I on the expressions
for T_" Rp.". At this stage, tbe functions f. g can be determined in terms of four constants of integration. If the constants
of integration are chosen such that frO) '" g(O) =0, and we also require that

1'T(O=<O,X)dx=O

it can be shown that

Rp." =Aoi - El(l:Io, i) - i'(3 - 2z)[Ao- 9 m (l:Io)] (AI5)

Spar, = O{Ao- 9m(I:I~) + 3(1- 2i)[8m(90 ) - 2Elm(l:Io))} cot 1:1.- 30'(1- Zi)[Ao-8m(l:IolJ (AI6)

Tpo" = i(I- i){2[38m (1:I0 )- 8 m(90 lJ cot 90 +60[.10 - 8 m(90)]} +[i'8m(l:Io)- 8(1:10 , i)J cot 90 , (Al7)

With the particular solution of eqns (A8) and (A9) now known. we can proceed to formulate the tbird order "Elasticity"
layer problem as an equivalent plane strain problem. This is accomplished by defining the functions R*, S*, T* hy

R '" R*+Rp." s '" S* +Sp." T T*+ Tp."

where R*, S*, T* satisfy the homogeneous forms of eqns (A8) and (A9), and hence can be expressed in terms of an Airy
stress function in the form

a'</J*S*=-
ail

a'</J*T*= --
aoaz'

Finally, the equation governing 4>* is obtained by substituting eqns (AIOHAI2), (AI5HAI8) into eqn (A7) with the result
that

_ 4i a: [V'</J'.' +8(9•• i)] _2 a(v'!'O» cot 1:10_4 a'.p(O'.
az' I - v iJl:I ai'

(AI8)

The stress·free boundary conditions can also be expressed in terms of .p*, and lead to the following equivalent
representation

lb* =0 a.p* = 0
az on i=<O, I (-00<0"'0) (AI9)
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(A20)

Thus, the problem of determining the stresses in the third order "Elasticity" layer is reduced to an equivalent plane
strain problem and is analogous to the problem of determining the transverse displacements of a laterally loaded
rectangular plate. However, in this case, the plate is clamped along the sides i = 0, I, but hinged on 6= 0 such that the
displacement is zero and the slope is prescribed.

As the present requirements are simply to obtain the limiting forms of the stress components iT.a>, T" we need not
obtain the complete solution of eqn (AI8), but only the limiting form as it contributes to the required stresses. Clearly, the
limiting form of 4>* is determined by the limiting form of the right hand side of eqn (At8). In particular, we note that all the
terms with the exception of the first, are either constants, functions of i, transcendentally small or become functions of i
as 161~oo. Thus, the required limiting form of 4>* is the sum of a function of i and a particular solution based on the first
term and given by

Clearly, this is the only term which will contribute to T*, and leads to the conclusion that R* is transcendentally small as
161~oo, •

The limiting form of T} is obtained from eqn (AI2) and the observations (see eqn 68) that To, (01/1'°)/08) are
transcententally small as 181~ 00, Thus, with T.... given by eqn (AI7), 1/1(0) '" I/I~":n and c(I* '" 4>:"", it follows that the
required limiting form of T, is

Finally, the required limiting form of iT.m is obtained from eqn (AI0) and the observations (see eqn 68) that iT:O),
(01/1'0'/06) are transcendentally small as 161~oo. Thus, with R".,.. given by eqn (AI5), c(I'O) "" 1/1:::.'.., it follows that the required
limiting form of iT.") is

iT:» "" {- 25(80' i) - 2i8.. (80)[i' - 3i+1+v(l- i'))}/(l- v) +i(l- i>[6 : ~: 5 ..(80 ) +Ao(l- 2i)l (A22)


